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1. Introduction

Forecasts of future earnings are an integral input for research in valuation in finance and ac-

counting. Researchers have used these forecasts in a variety of settings. For instance, Frankel and

Lee (1998) generates estimates of intrinsic value to identify mispriced stocks. Forecasts are also the

building blocks in estimating implied cost of capital (ICC), a metric of risk and expected returns

that finance and accounting researchers have used to answer several important questions.

Until recently, the only forecast source was from sell-side analysts, usually obtained from data

sources such as I/B/E/S or First call. There were two fundamental problems with analyst forecasts.

One - analysts typically follow only a subset of the universe of firms, usually the larger firms with

high levels of institutional investment. Two, prior research has shown that analyst forecasts are

often optimistically biased and inaccurate. Previous research has shown the poor quality of analyst

estimates to be responsible for the relatively weak performance of the ICC metrics in terms of their

correlation with future realized returns (e.g., Easton and Monahan, 2005; Mohanram and Gode,

2013).

The past decade has seen the emergence of cross-sectional regression-based models that provide

forecasts of future earnings. The most common models are the HVZ model from Hou, van Dijk,

and Zhang (2012) and the earnings persistence (EP) and residual income (RI) models from Li and

Mohanram (2014). They address two problems – lack of coverage, especially for smaller firms in

weaker information environments, and the bias/inaccuracy of analyst forecasts. They, however, do

have the problem of being inaccurate (though generally unbiased), with some models even under-

performing a näıve Random Walk model (Gerakos and Gramacy, 2013).

The last few years have seen the emergence of models using machine learning (ML). ML models

are potentially attractive for a few reasons. First, ML models can accommodate a large number of

predictors, thus allowing researchers to use a broader information set than simple cross-sectional

models. Secondly, several ML models also allow for non-linear and non-parametric relationships

between the underlying data and the outcome variable (future earnings). In this paper, we evaluate
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two classes of ML models — penalized linear models (Lasso and Ridge) and decision-tree based

models (Random Forest and Gradient Boosting Regression) — in their earnings forecasting efficacy

and the predictive ability of implied cost of capital (ICC) estimates based on those forecasts.

We begin by testing various ML models’ performance compared to the extant cross-sectional

models in a sample of US firms. The ML models generally perform better than the cross-sectional

models and significantly better than the näıve random walk model. Among the cross-sectional

models, the EP and RI models from Li and Mohanram (2014) generally perform the best. Among

the ML models, we find that the Gradient Boosting Regression (GBR) and Random Forest (RF)

models perform the best, not just among ML models but among all models. However, the improve-

ment of the best ML model over the best cross-sectional model is relatively modest, with a 3-6%

improvement in forecast accuracy.

ML models are computationally intensive relative to the parsimonious traditional forecasting

model (HVZ, EP, and RI), which raises the question of whether the modest improvement in MAFE

is worth the additional effort. To better understand the relative performance of these models, we

partition the sample based on several characteristics related to the information environment —

firm size, analyst following, and earnings volatility. For firms with volatile earnings or small firms

in the early stages of their life-cycle, it is plausible that the parsimonious linear cross-sectional

forecasting models might not effectively mimic the underlying earnings-generating process. ML

models accommodating a more comprehensive set of predictors and non-linearities in the data

might be better suited to forecast the earnings of such firms. Consistent with our intuition, we

find that the ML models perform significantly better in firms with relatively weaker information

environments. The improvement in forecast accuracy is almost 10 percent for small firms, firms

with no analyst following, and firms with high earnings volatility.

Given the demonstrated efficacy of the ML models for firms with arguably ”hard-to-forecast”

earnings in the US, the natural question is to ask how these models would perform in an inter-

national setting. Ex-ante, one can think of why such models might perform better or worse. ML
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models might perform better because the information environment tends to be weaker in interna-

tional settings because of poorer accounting standards, weaker enforcement, and weaker governance.

Moreover, given the variation in accounting standards and economic forces across countries, it is

likely that a simple linear model which works in the US might not be adequate outside the US.

Conversely, ML models with their more extensive data and estimation requirements might be worse

off outside the US where data is likely to be of poorer quality. Further, the estimation might require

the pooling of data across countries which can differ substantially in their accounting standards

and other institutional characteristics. Running ML models by country might also not be feasible

as the sample sizes for estimation are likely to be smaller if one estimates the parameters at the

country level or . Therefore, the relative efficacy of the ML models outside the US is an empirical

question.

We examine this question using an extensive global sample from 61 countries. The extant cross-

sectional models perform poorly in an international context, producing estimates with more error

than the naive random walk model. The ML models, in general, outperform the extant models in a

global setting. Consistent with non-parameterization and non-linearities being more important for

the diverse international sample, we find that the GBR model performs the best outside the US.

The improvement in forecasting accuracy for the GBR model is substantial, often more than 10%.

The improvements from the GBR model in the international sample hold for firms with strong or

weak information environments.

In addition to forecast accuracy, researchers might also care about the average level of bias in

the generated forecasts. Additional tests indicate that the best ML models (GBR and RF) perform

as well as, if not better than, the cross-sectional models in terms of providing unbiased forecasts,

both in the US and in the international samples.

Given that forecasts are vital inputs in valuation models, we test the efficacy of the various

forecasting models by examining the predictive ability of implied cost of capital (ICC) metrics

that can be calculated using the forecasts. We find that the ICCs estimated from the GBR model
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perform the best in terms of correlation with realized future returns in both the US and international

samples.

This paper makes the following important contributions to the literature in finance and ac-

counting. First, ML models (specifically the GBR model) generate substantially better forecasts of

earnings, both in terns of lower forecast error and less bias. Second, the GBR model performs par-

ticularly well in the international context, where the extant cross-sectional models perform poorly.

Third, using forecasts from the GBR model generates ICCs that perform the best as measures of

expected returns, both in the US as well as internationally. We recommend that future research

that requires earnings forecasts, whether they are used as measures of expected earnings or they

are used to compute ICCs, use the GBR model both for the US and for international settings.

The rest of the paper is organized as follows. Section 2 positions our paper in the related lit-

erature on forecasting, the use of machine learning models, implied cost of capital, and differences

between the US and international context. Section 3 outlines our research methodology — model

description, estimation, and validation. Section 4 presents the results of our estimation and com-

pares the performance of the different models in the US as well as international settings. Section 5

concludes.

2. Relation to Literature

Forecasting profitability constitutes a rich literature in accounting. This literature has often

intersected productively with another body of methodological work in accounting — estimating

expected returns using the so-called Implied Cost of Capital (ICC). However, researchers in this

area are only beginning to explore innovations in machine learning for forecasting. And while a

large body of work uses outputs of forecasting models and ICCs in research in an international

context, methodological work remains scarce outside the US context.
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2.1. Cross-sectional Models in Forecasting

Researchers in the area of valuation have long relied on forecasts of future earnings as crucial

inputs into their analysis. The forecasts were used in a variety of contexts - e.g. Frankel and Lee

(1998) who used the forecasts to come up with measures of intrinsic value (V) and estimate a Value

to Price or V/P ratio to identify undervalued and overvalued stocks, or the entire literature on

implied cost of capital (e.g., Gebhardt, Lee, and Swaminathan, 2001; Gode and Mohanram, 2003;

Easton, 2004; Botosan and Plumlee, 2002). For a long time, the only source of forecasts was a

reliance on analyst forecasts from sources such as I/B/E/S or First Call.

Using analyst forecasts presented researchers with two major problems. First, analyst forecasts

were generally optimistic and not very accurate. Easton and Monahan (2005); Easton and Sommers

(2007); Mohanram and Gode (2013) are among the papers that show that inaccurate and optimistic

forecasts are the leading reasons for why ICC models do not perform well in terms of predicting

future returns. Second, analyst forecasts are not available for the universe of firms, as analysts

tend to follow larger firms in strong information environments. This lack of coverage essentially

means that researchers are unable to answer interesting questions on topics such as information

quality and disclosure in the subset of firms where the answers to such questions would be very

insightful - small firms and firms in weaker information environments. Researchers had also tried to

use time-series models to come up with forecasts. However, the lengthy firm-specific time-series of

data required to estimate such models essentially rendered them useless or ineffective in the subset

of younger firms that did not have a lengthy history.

Cross-sectional forecasting, a technique that has emerged in the last decade, attempts to address

both these shortcomings. Firstly, it uses the cross-section of data without imposing any firm-specific

data limitation - i.e. a firm does not need to have existed in the entire estimation period. This

essentially allows one to estimate the forecasts for nearly the entire universe of firms. Secondly, the

models are not subject to the behavioral biases that plague analyst forecasts and generally produce

unbiased forecasts.
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The paper that pioneered the of cross-sectional forecasts is Hou et al. (2012), who build on

models in Fama and French (2000, 2006) and regress future earnings on total assets, dividends,

earnings and accruals. However, Gerakos and Gramacy (2013) show that in terms of forecast accu-

racy, the HVZ model underperforms a näıve random walk model that simply sets future earnings

to past earnings. Further, the forecast errors of the HVZ model is rather high – the mean absolute

error (scaled by price) for one-year-ahead earnings is 0.084 for firms with analyst coverage (Table 3

of Hou et al. (2012), page 9). If one assumes an average P/E ratio of 12, this represents an absolute

error that is on average equal to the estimate of earnings itself. More importantly, the HVZ model

generates larger forecast errors for firms without analyst coverage where the need for a forecasting

model is crucial.

Li and Mohanram (2014) attempt to improve on the HVZ model with a model that is motivated

by the literature in accounting (e.g., Dechow, 1994) which has generally shown that accrual based

measures like earnings show greater persistence and predictability than the cash flow based measures

that the HVZ model relies on. They present two alternative models - the earnings persistence model

(EP) and the residual income model (RI) - and show that both models outperform the HVZ model

as well as the random walk model. Further, the EP and RI models perform particularly well in

the subset of small firms and firms without analyst following, where the utility of these models is

the most salient. However, in absolute terms, the average level of forecast error reported in Li and

Mohanram (2014) is still rather high. For instance, the mean absolute forecast error for one-year

ahead earnings for the EP and RI models is 0.073 - significantly better than the HVZ and RW

models, but still high. In this paper, we will attempt to see if the use of machine learning based

approaches can generate forecasts with significantly greater accuracy.

2.2. Application of Cross-sectional Forecasts: Implied Cost of Capital

Cost of equity plays a central role in valuation, portfolio selection, and capital budgeting.

Therefore, measuring and validating cost of equity metrics has been the subject of much research.
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Inferring cost of equity ex-post from realized returns is problematic because the correlation between

expected returns and realized returns is weak Elton1999. Prior research has often documented a

weak or even non-existent relation between conventional measures of risk (e.g., beta and realized

returns (Fama and French, 1992). This has led to the use of implied cost of capital (ICC), which is

the discount rate that equates current stock price to the present value of expected future dividends.

Prior literature has taken different approaches towards measuring ICC. Gebhardt et al. (2001)

and Claus and Thomas (2001) use variants of the residual income model to solve for the discount

rate that equates price to the sum of book value and the present value of future abnormal earnings.

Gode and Mohanram (2003) and Easton (2004) develop proxies based on the abnormal earnings

growth model of Ohlson and Juettner-Nauroth (2005).

ICCs are widely used by researchers in accounting and finance in a variety of contexts. Most

commonly, researchers have used ICC to see if a firm’s information environment has changed in

response to changes in voluntary disclosure (Dhaliwal, Li, Tsang, and Yang, 2011), accounting

standards (Daske, Hail, Leuz, and Verdi, 2008; Li, 2010), securities regulation (Hail and Leuz,

2006), tax laws (Dhaliwal, Krull, Li, and Moser, 2005), etc.. Typically, researchers use the average

of the four commonly used ICC metrics mentioned above as their measure of ICC. Mohanram

and Gode (2013) validate this approach by showing that such a composite ICC metric has lower

measurement error than any of the individual ICC metrics.

Earnings forecasts are a crucial input in the estimation of ICC. Usually, the models require

both a short term forecast (i.e. forecast of one-year-ahead EPS) as well as long-term forecasts

(either forecasts of longer horizons or forecasts of long-term growth). Most of the early papers

relied on earnings forecasts to generate ICCs, despite the problems of limited coverage and bias

in the forecasts. Easton and Monahan (2005) show that ICCs perform rather poorly in terms of

predicting future returns, while Easton and Sommers (2007)) demonstrate that most ICC models

generate measures that are biased upwards because analyst forecasts are optimistic. Mohanram

and Gode (2013) show that when analyst forecasts are adjusted for predictable error and bias, the
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ICCs generated from these forecasts perform better.

With the emergence of cross-sectional forecasts, most researchers use these models (either the

HVZ model or the EP or RI model from Li and Mohanram (2014) to estimate ICCs. The ICC

paradigm is the most direct application of forecasting. In addition, these papers use ICC as a tool

to validate the forecasts - i.e. for the forecasts to be any good, the ICCs that one can generate from

these forecasts should also perform better. In this paper as well, we will analyze the performance

of the ICCs that are generated from the ML based forecasting models and test whether they

outperform the ICCs generated from the extant models.

2.3. Emergence of Machine Learning in Forecasting

Machine Learning (ML) as a tool to solve the two canonical prediction problems in accounting

and finance research — predicting profitability and returns — is receiving considerable attention

because of the ability of ML models to handle correlated, high-dimensional data and unspecified

non-linearities within the data.

This growing literature has primarily focused on predicting asset returns (e.g., Freyberger,

Neuhierl, and Weber, 2020; Gu, Kelly, and Xiu, 2020). A key motivation behind this work has

been to solve the dimensionality problem created by the proliferation of return-predictive signals.

This literature suggests that machine learning models successfully identify the return predictors

with independent information and generate significant improvement over existing models in terms

of the quality of predictions. Moreover, this literature suggests that the advantage of machine

learning models is realized in methods that allow for nonlinear predictor interactions.

The literature focusing on the utility of ML in forecasting the other key input of equity valuation

— profitability — is relatively nascent (e.g., Cao and You, 2020; van Binsbergen, Han, and Lopez-

Lira, 2020; De Silva and Thesmar, 2021). While the overarching goal of this literature has been

to evaluate the efficacy of ML models in forecasting future firm profitability, the key focus of the

individual papers differs. van Binsbergen et al. (2020) and De Silva and Thesmar (2021) focus
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on using ML to create an optimal earnings benchmark to precisely identify expectation errors by

analysts. In work related to ours, Cao and You (2020) focus on the entire cross-section of US firms to

identify the optimal forecast of future profitability. Consistent with the findings from the literature

using ML to predict returns, ML models incorporating non-linearities yield the best results in

forecasting profitability. Cao and You (2020) find that the nonlinear ML models (Random Forest,

Gradient Boosting Regressions, and Artificial Neural Networks) yield predictions that outperform

those from a naive benchmark from the RW model while those from the extant linear models (HVZ,

RI, and EP) do not. To our knowledge, we are the first to examine the efficacy of these models

outside the US.

2.4. US vs International Evidence on Forecasting and ICCs

The body of methodological work described above almost exclusively focuses on the US context.

There is little evidence on the efficacy of the various linear cross-sectional models in forecasting

profitability and serving as inputs to ICC models outside the US. The performance of the extant

models outside the US is not obvious ex-ante. First, at a general level, the US and other global

markets vary on economic, political, legal, and institutional dimensions (Ball, 2016) which should

motivate examination of economic models outside the US. Secondly, empirical evidence suggests

that institutional and economic differences across countries also affect the earnings process, the

critical outcome of interest in this literature (Healy, Serafeim, Srinivasan, and Yu, 2014). Con-

sequently, it is plausible that findings based on linear parameterized earnings forecasting models

estimated on US data might not extend internationally.

The question of identifying earnings forecasting models that perform robustly internationally is

an important one because a burgeoning body of work in accounting and finance uses ICCs to study

the influence of various policies on firms’ cost of capital in an international context (Chattopadhyay,

Lyle, and Wang, 2022). As, Chattopadhyay et al. (2022) document, the performance of ICCs using

forecasts from the extant models is relatively inconsistent outside the US, while the availability of
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analyst forecasts is sparse. Moreover, as Fang, Hope, Huang, and Moldovan (2020) document, the

availability of analyst forecasts in Europe is declining following the enactment of MiFID II.

We fill this gap and build on the literature described above by examining the efficacy of the

ML models outside the US context as well as the validity of the ICC estimates generated using

the outputs of these models. The latter analysis differs from the literature on using ML to predict

returns in one key way. Instead of fitting a wide set of accounting characteristics to a noisy outcome

variable (returns), we use ML to generate optimal forecasts of a less noisy accounting variable

(earnings). We map these earnings to returns by using the theoretically motivated present-value

approach to estimate ICCs.

3. Research Methodology

In this section, we briefly discuss the conceptual underpinnings of the various forecasting models

and ICC measures we consider and detail their estimation processes. We also discuss our empirical

framework for evaluating the forecasting models and the ICCs.

3.1. Forecasting Profitability

We evaluate four candidate machine learning models — two from the class of linear penalized

models (Lasso and Ridge) and two tree-based models incorporating non-linearities (Random Forest

and Gradient Boosting Regression) — against the extant models described in Section 2.1..

3.1..1 Traditional Models

The three traditional cross-sectional forecasting models we consider are the HVZ model devel-

oped by Hou et al. (2012) and the RI and EP models are based on the work by Li and Mohanram

(2014). We use a naive random-walk model (RW) prediction as a benchmark. All three cross-

sectional models produce earnings forecasts by estimating the following general model:

10



E[Ei,t+τ ] = β0 + β1Xi,t + ϵi,t (1)

where E[Ei,t+τ ] represents expectation of earnings τ periods away and Xi represents firm-level

characteristics measured at time t. The Appendix describes each model in terms of the firm

characteristics involved. One difference between the HVZ model and the RI and EP models is

that HVZ estimates earnings while RI and EP estimate earnings per share. We follow the extant

literature in estimating the HVZ, EP,and RI models (Hou et al., 2012; Li and Mohanram, 2014).

Specifically, for each year t in our sample, we use the previous 10 years’ of observations (t − 1

to t − 10) as the training sample to estimate the parameters of each model, and then we use the

parameters and the financial information in year t to generate the forecasts for year t + 1 to year

t + 3.1 When estimating the models for the international setting, we use a pooled sample with

observations across all countries in our sample to increase the size of the training sample. 2

3.1..2 ML Models: Background and Estimation

We briefly discuss the machine learning models we evaluate and detail our estimation process.

Readers should refer to Hastie, Tibshirani, and Friedman (2009) for a significantly more technical

description of these models.

The first class of models we evaluate is the so-called penalized class of models. The essential

advantage of these models over linear regression is their lesser susceptibility to overfitting as the

1To mitigate look-ahead bias, we follow Li and Mohanram (2014) and assume that firms with fiscal year ending
in April to June do not have their financial information available by end of June. We only include firms with fiscal
year ending in April of year t-1 to March of year t when estimating the models for year t.

2There is a trade-off in the international setting between the size and the relevance of the training sample. Using a
pooled sample across countries increases the size of the training sample, while countries with heterogeneous business
environments are designed to have the same model parameters. On the other hand, estimating the models by country
will allow each country to have different parameters, but it decreases the training sample sizes. In untabulated
analyses, we estimate the models by country in the international setting and our inferences regarding the superior
performance of machine learning models remain unchanged. However, the performance of each model generally
becomes worse because of the smaller training samples.
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number of parameters to be estimated increases. OLS estimates parameters to minimize a standard

least squares objective function :

βOLS = argmin
β

∑N
i=1(yi − β0 −

∑p
j=1 xijβj)

2 (2)

where we are estimating a linear model with p predictors and N observations. With an increase

in the number of parameters to be estimated, OLS is prone to overfitting the model in-sample,

leading to poor predictive performance out-of-sample. Moreover, coefficient estimates in a linear

regression can be poorly determined and harder to interpret with many correlated predictors.

Penalized models, also referred to as Shrinkage methods, are constrained to place the greatest

weight on the subset of predictors with the highest predictive content. Penalized models thus allow

for bias in the parameter estimates to minimize expected prediction error. By shrinking coefficients,

penalized models also avoid the problem of overfitting for high-dimensional models. We examine

two popular candidates from this class of estimators, Ridge Regression and Lasso. Ridge Regression

minimizes a penalized sum of squares:

βRidge = argmin
β

{∑N
i=1(yi − β0 −

∑p
j=1 xijβj)

2 + λ
∑p

j=1 β
2
j

}
(3)

where λ is the shrinkage parameter which scales coefficient values lower. Lasso minimizes the

following penalized sum of squares:

βLasso = argmin
β

{∑N
i=1(yi − β0 −

∑p
j=1 xijβj)

2 + λ
∑p

j=1 |βj |
}

(4)

where λ is the corresponding shrinkage parameter for Lasso. We can describe the key differ-
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ence between Ridge and Lasso in a simplified manner as saying that Ridge shrinks all coefficients

proportionally while Lasso shifts coefficients by a constant, truncating at zero. Thus, in Ridge,

all predictors will technically get a non-zero coefficient, while Lasso will altogether discard some

predictors. Moreover, while the Ridge estimate has a closed-form solution, Lasso requires numerical

estimation.

We estimate all machine learning models with 56 predictors in total, including 28 financial

statement line items obtained from Compustat and their changes relative to the previous year.3

Similar to the estimation process for the traditional models, we use previous 10 years’ of data

when estimating machine learning models and we use the pooled sample across all countries when

estimating the models in the international setting to increase the size of training sample. To reduce

the subjectivity of researchers and search for the optimal choice of hyperparameters of machine

learning models, we use a five-fold cross-validation process to search among a group of candidate

values and identify the optimal hyperparameter values for each year (Hastie et al. (2009)).4

Finally, we consider two non-parametric decision-tree-based models — Random Forest (RF)

and Gradient Boosting Regression (GBR). Both RF and GBR are ensemble learning models, i.e.,

they are a collection of individual models. The fundamental model in each ensemble is a regression

tree. A regression tree partitions the data into a set of regions where the predicted value in each

region is a constant that minimizes a squared-error loss function. So, for a dataset partitioned into

M regions R1, R2, ...., Rm, a decision tree can be represented as:

3Detailed definitions of the predictors are available in the Appendix. The number of predictors become 54 for the
international sample because XAD is unavailable in Compustat Global.

4The K-fold cross-validation process is a popular and useful way to reduce potential over-fitting of the estimated
models. The process starts with randomly dividing the training sample into K groups without replacement and then
uses one of the groups as testing data and the other K-1 groups as training data. This process is repeated K times
so that each group will be used as test data once. The average performance of a model will be calculated after using
each group as test data. We use the cross-validation process to determine the degree of sparsity parameter of the
estimated coefficients for the Lasso and Ridge models and candidate values for the parameter range from 0.0001 to
0.1. with a step of a thousandth of the interval.
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f(x) =
M∑

m=1

cm1(x ∈ Rm) (5)

Since the loss function is a sum of squares, the predicted value in each region is simply the

average of the outcome variable for that region. A decision tree is modeled using a greedy algorithm

which starts with the entire data and splits it using a predictor j and a split point s into regions

R1 and R2 that solves:

min
j,s

 ∑
xi∈R1(j,s)

(yi − c1)
2 +

∑
xi∈R2(j,s)

(yi − c2)
2

 (6)

For any j and s, the minimization is solved by the average of the outcome in each region. Thus,

a splitting point s can be found for each predictor. As the first split, the algorithm chooses the

predictor which produces the lowest value of the sum of squared errors as described in Equation 6.

The algorithm repeats the process for each subsequent resulting region. Since a few iterations of

this process are likely to result in a very complex tree, one of the critical parameters for designing

a regression tree is the depth of the tree. The tree depth is usually chosen by pruning a large tree.

The pruned tree is selected by minimizing a loss function which includes a penalty for the number

of terminal nodes in the smaller tree. The key advantage of regression trees is their conceptual

simplicity and flexibility to accommodate non-linearities and interactions in the data. However,

the flexibility of an individual tree is undermined by its high variance. A small change in the data

can lead to a tree of a very different structure. Therefore, an ensemble approach is preferred to

produce more robust models.

RF and GBR are two popular ensemble approaches to arrive at more robust models based on

regression trees. The RF approach uses bootstrapped data samples to create multiple regression

trees. The final output for the random forest is the average of the outputs of the individual trees.
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Thus the critical parameters of a random forest are the number of trees and the depth of each

tree. On the other hand, GBR uses an iterative approach instead of aggregating independent trees.

GBR starts from a simple tree that produces errors that are not significantly lower than using the

sample average as the predictor. GBR fits a regression tree to the residuals from the first tree in

the next iteration. It keeps repeating this process for a set number of iterations, with the final

output being an addition of the individual regression trees.

The estimation process of the RF and GBR models are similar to that for the Lasso and Ridge

models. We use the same set of 56 predictors and we use previous 10 years’ of data to the estimate

the models for each year. In addition, we use the five-fold cross-validation process to search for the

optimal choice of hyperparameters of the two models for each year.5.

3.2. Proxying for the Information Environment

While it is necessary and important to focus on improving earnings forecasting accuracy for

the entire population of firms, this task becomes particularly important when firms are in weak

information environments. This is because forecasts from analysts are often of poor quality or even

non-existent. This means that model-based forecasts are even more important.

We consider three proxies for information environment. Prior research has long used firm size

as a proxy for the quality of the information environment (e.g., Brown, Richardson, and Schwager,

1987; Wiedman, 1996) because small firms have poorer disclosure quality, weaker auditing, less

coverage in media, less institutional investment, and poorer analyst following. Our first proxy is

hence firm size, measured by market capitalization.

Second, we consider whether a firm has analyst following or not. Prior research would simply

delete such firms in their analysis till the emergence of cross-sectional forecasts. Cross-sectional

5For the RF model, we set the number of trees in the forest to be 500. The candidate values for the depth of the
tree range from 20 to 35 with a step of 5, and the candidate values for the minimum number of samples required to
be at a leaf node ranges from 15 to 50 with a step of 5. For the GBR model, we use the huber loss function and set
the number of trees to 500.The candidate values for the depth of the tree are 1, 3, and 5, and the candidate values for
the minimum number of samples required to be at a leaf node ranges from 75 to 150 with a step of 25. The choices
of the parameters are following those in Cao and You (2020)
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forecasting allows researchers to generate estimates of future earnings. However, given the lack of

other alternatives, forecast accuracy is particularly important for this subgroup.

Our third proxy is the volatility of earnings. Volatile earnings make forecasting more difficult.

Prior research (e.g., Bhushan, 1989; O’Brien and Bhushan, 1990) shows that analysts often shy

away from providing forecasts for firms with volatile earnings. In addition, the volatility also

makes cross-sectional forecasting potentially less effective, as extrapolating from the past to the

present is more difficult. We measure earnings volatility as the standard deviation of the firm’s

quarterly return on assets (ROA) in the previous 5 years.

3.3. Estimating Implied Cost of Capital (ICC)

We evaluate the various earnings forecasting models by also examining the predictive content of

ICCs calculated using their ouputs. We compute four ICC variants commonly used in the literature.

Two are based on the residual income valuation model from Ohlson (1995) and Feltham and Ohlson

(1995) - the GLS model from Gebhardt et al. (2001) and the CT model from Claus and Thomas

(2001). Two are based on the abnormal earnings growth model from Ohlson and Juettner-Nauroth

(2005) - the OJ model from Gode and Mohanram (2003) and a simplifed PEG model from Easton

(2004). We estimate annual ICCs at the end of June of each year and winsorize each ICC estimate

at the 1% and 99% levels for each cross-section. To further mitigate the effect of outliers, following

Mohanram and Gode (2013), we calculate a composite ICC as the average of the ICCs from the

four approaches mentioned above. If one or more of the four individual ICCs are unavailable, we

follow Hou et al. (2012) and compute the composite ICC as the average of those available. Finally,

we convert the composite annual ICCs into monthly ICCs for our regression-based validation tests

described in the following section. Our monthly composite ICC estimate is therefore given by:

ICCmonthly = (1 + ICCannual)
(1/12) − 1 (7)
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3.4. Validating Forecasts and ICCs

Following prior research (Li and Mohanram, 2014), we evaluate the earnings forecasting models

by examining the mean absolute forecast error (MAFE) of the output of each model. More specifi-

cally, we compute the cross-sectional average of the MAFE from each model and then examine the

time series of these averages. We perform this exercise for forecasts up to three years ahead for

both the US and our international sample. We also compare the relative efficacy of the ML models

over the traditional models by examining the difference in the cross-sectional averages of various

models.

We also follow prior research (e.g., Chattopadhyay et al., 2022; Li and Mohanram, 2014;

Lewellen, 2015) in evaluating the ICCs computed using the outputs of the various forecasting

models. We assess the ICCs by examining their association with future realized returns. We use

both a regression-based approach and a non-parametric approach using portfolio sorts to validate

that the cross-sectional differences in ICCs are directionally consistent with the differences in re-

alized returns. For the regression-based method, we estimate Fama-Macbeth (FM) regressions of

one-month-ahead realized returns on the various composite ICC estimates:

Ri,t+1 = β0 + β1ICCi,t+1 + ϵi,t+1 (8)

A positive and significant β1 would validate the predictive ability of an ICC estimate. Ideally,

we would expect β1 to be 1 for an accurate measure of expected returns. Consequently, we also

evaluate ICCs on whether we can statistically distinguish β1 from 1. As Chattopadhyay et al.

(2022) discuss, this is a minimally sufficient criterion for evaluating a proxy of expected returns.

We also examine the equal-weight predicted and realized returns of monthly decile portfolios based

on each ICC measure.
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3.5. Data Sources

We obtain the annual financial information for US firms from Compustat and collect stock

returns from CRSP, and we obtain financial and stock prices information for the international

sample from Compustat Global. Analyst coverage information is obtained from I/B/E/S. Our US

sample covers the period from 1969 to 2017 and we require each firm to have common shares listed

on the NYSE, AMEX, and NASDAQ, and the stock price at the end of June to be higher than 1

USD. We exclude financial and utilities firms from our sample. After further dropping observations

with missing values for our predictors, we have 90,405 firm-year observations in the final sample.

Our international sample is constructed with similar data requirements and we convert all variables

to US dollars before applying the filters. We further require each country in the sample to have at

least 100 observations, which leaves us with a final sample of 120,296 firm-year observations from

61 countries.

4. Empirical Findings

4.1. Model Performance in the US: Absolute Forecast Error

4.1..1 Overall Sample

We begin our analysis by analyzing the forecast errors in the sample of US firms from the

following models. We consider the following cross-sectional models. HVZ is from Hou et al. (2012).

RW is a naive random walk model, which is used as a benchmark to compare the performance of

the cross-sectional models. EP and RI are the earnings persistence and residual income models

respectively from Li and Mohanram (2014). We also consider the following four machine-learning

based models, Lasso, Ridge, Gradient Boosting Regression (GBR) and Random Forest (RF). The

metric we focus on is Mean Absolute Forecast Error (henceforth MAFE), calculated as the mean

of the absolute value of the difference between the estimated earnings per share (estimated Net

Income in dollars for HVZ) and the actual realized earnings per share (realized Net Income for
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HVZ), scaled by price per share (market capitalization for HVZ). We calculate MAFE for one-year-

ahead, two-year-ahead and three-year-ahead horizons. The results are presented in Table 1.

The first set of columns present the results for one-year-ahead forecasts. Among the cross-

sectional models, the EP and RI models have the lowest MAFE at 0.057. This is significantly

better than 0.064 for RW and 0.078 for HVZ. Among the ML models, the GBR and RF models

perform the best, with MAFE of 0.054. This is significantly better than the best of the cross-

sectional forecasting models. The last four rows of the table present a pair wise comparison of

the MAFE across models. For brevity, we only compare the two best ML models (GBR and RF)

with the benchmark of the random walk model (RW) as well as the two best cross-sectional models

(EP and RI). The results indicate that the ML models produce MAFE that is significantly lower

by around 0.003-0.004, which represents an improvement of around 5-7% compared to the average

error of the cross-sectional models.

The next two sets of columns repeat the analysis for the two-year-ahead and three-year-ahead

forecast horizons. The results follow generally similar trends, with some noticeable differences. As

expected, the MAFE increases for all models as the horizon becomes more distant. Among the

cross-sectional models, the RI model is clearly the most accurate. Among the ML models, the Lasso

and Ridge models actually perform worse than the RI model. Consistent with our earlier results,

the GBR and RI models perform the best among all the ML models and indeed among all models.

Both GBR and RI produce errors that are significantly lower than the best cross-sectional model

(RI). The improvement continues to be around 0.003, which while significant, only represents an

improvement of around 4%.

What is the source of the superiority of the two ML models over the more parsimonious models?

Is it the superiority of the ML technique, or could be driven by the greater information being

used as an input to these models? Stated otherwise, do we unintentionally hamstring the cross-

sectional model by using a far more parsimonious set of predictors? To answer this question, we

estimate a conventional regression based cross-sectional model using the entire set of variables used
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in the ML models. The results are not tabulated for brevity, but discussed below. We find that

adding additional variables in such an augmented cross-sectional worsens rather than improving

the performance of cross-sectional models. The one-year-ahead MAFE of such an augmented model

is 0.058, or slightly worse than the 0.057 reported for both EP and RI. The augmented model’s

performance worsens for the two-year-ahead horizon (0.089 vs 0.081 for EP and 0.079 for RI) as

well as the three-year-ahead horizon (0.136 vs 0.101 for EP and 0.089 for RI). This suggests that

the improvement seen in the ML models is not driven by the additional explanatory variables, but

rather by the ML models themselves.

The analysis of forecasting accuracy presented above suggests that the best of the ML models

(GBR and RF) perform better than the best of the cross-sectional forecasting models (EP and RI).

However, the extent of the improvement is modest, especially given that the ML models are both

data and computationally intensive. What might make these models worthwhile to pursue is if

they show superior performance in settings where forecasting is difficult. We examine this in the

next sub-section.

4.1..2 Partitions based on the Information Environment

In the prior sub-section, the results indicated that the best of the ML models (GBR, RF)

generated forecasts that were on average significantly more accurate than the best of the cross-

sectional models (EP, RI). We next examine the performance of the cross-sectional models and

the ML models across partitions based on the information environment to see where we see the

most significant improvement. For researcher to deem the ML models to be worth the additional

investment of data and computational intensity, we should ideally find that the improvements in

forecast accuracy are greater in settings where forecasting is more difficult, i.e. firms in weaker

information environment. We consider the following three partitions - firm size, analyst following

and earnings volatility. The results are presented in Table 2.

Panel A presents the results partitioned by size (Market Capitalization). For each year, we split
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the sample into two equal groups (labelled Small Firms and Large Firms). The MAFE for each

group is presented pooled across the entire time period. The first set of columns present the results

for small firms. As the results indicate, we see a significant improvement in forecasting accuracy

with the ML models. For a one-year horizon, GB and RI both see an improvement of 0.005 over

the errors of EP and RI at 0.078, which represents an improvement of over 6%. The improvement

persists for longer horizons. For two-year-ahead forecasts as well, we see that MAFE reduces from

0.106 for RI to 0.100 for GBR and RI, a reduction in error of 0.006 or almost 6%. Finally, for

three-year-ahead forecasts, the MAFE reduces from 0.131 for RI to 0.125 for GBR and RF.

The next set of columns present the results for larger firms. At the outset, it is easy to see

that the forecast error is much smaller for larger firms. For instance the MAFE for the best

cross-sectional model EP is only 0.036 which is less than half the error for small firms (EP and

RI at 0.078). Interestingly, the improvement with ML models, while statistically significant for

one-year-ahead forecasts is minuscule with both GBR and RI having MAFE of 0.035. For longer

horizons, there is literally no improvement. For two-year-ahead forecasts, the MAFE for the best

cross-sectional model (EP and RI at 0.051) is identical to that for the best ML model (GBR and RF

at 0.051). Similarly, for three-year-ahead forecasts, the MAFE for the best cross-sectional model

(EP and RI at 0.064) is identical to that for the best ML model (GBR and RF at 0.064). Thus

the results of the first partition suggest that the improved forecasting accuracy of ML models is

concentrated in the crucial subgroup of small firms.

Panel B presents the results partitioned by analyst following. We consider two groups - firms

with and without analyst following, which obviously do not have to be of the same size. The first

set of columns present the results for the crucial subgroup of firms without analyst following. For

this partition, there is no alternative of analyst forecasts, so researchers have to rely on model-based

forecasts. Here, we see a significant improvement in forecasting accuracy with the ML models. For

a one-year horizon, GB and RI both see an improvement of 0.005 over the errors of EP and RI

at 0.071, which represents an improvement of almost 7%. The improvement persists for longer
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horizons. For two-year-ahead forecasts as well, we see that MAFE reduces from 0.096 for RI to

0.091 for GBR and RI, a reduction of error of 0.005 or almost 6%. Finally, for three-year-ahead

forecasts, the MAFE reduces from 0.120 for RI to 0.114 for GBR and RF, an improvement of 0.006.

The next set of columns present the results for firms with analyst following. At was the case

for large firms, the forecast error is smaller for followed firms. For instance the MAFE for the best

cross-sectional model (EP and RI) is only 0.048 as opposed to 0.071 for firms without following.

Interestingly, we find that ML models perform better even in the subset with analyst following. For

one-year-ahead forecasts, the best ML model (GBR) has a MAFE of 0.043, significantly better than

the 0.048 for EP and RI. We find similar improvements for the two and three-year-ahead forecast

horizons.

Most regression based earnings models extrapolate from current performance into the future,

a task that becomes more challenging when earnings are volatile. Our final partition is that of

earnings volatility, defined as the standard deviation of net income scaled by total assets over the

past N years for a given firm. We partition our sample into two equal groups each year and present

the results pooled across time in Panel C. The results mirror those for the size partition. We

find that the ML models significantly outperform the cross-sectional models for the high volatility

subsample. For one-year-ahead forecasts, the best cross-sectional model (RI) generates MAFE of

0.075, while the best ML model (GBR) generates MAFE of 0.068, an improvement of 0.007 or

almost 10%. GBR continues to be the best performing ML model for two and three-year-ahead

horizons as well, generating improvements of 0.007 and 0.005 respectively.

The next set of columns present the results for the low volatility subsample. Consistent with

our results for large firms, we find either insignificant or marginally significant improvements for

the best ML model (GBR or RI) as compared to the best cross-sectional model (EP or RI).

Overall, the results from the partition analysis validate the usefulness of machine learning

models. The superior performance of the ML models is concentrated in subsamples of small firms

and firms with the most volatile earnings, where the extant cross-sectional models tend to have

22



high levels of forecast error. This suggests that the machine learning models are particularly useful

in settings with weaker information environments.

4.2. Model Performance Internationally: Absolute Forecast Error

Our analysis thus far has only focused on US firms. Whether the findings that machine learning

models generate significant improvements over extant cross-sectional models would translate to an

international setting is unclear. Our partition analysis suggests that ML models are particularly

useful in settings with weaker information environments. Prior research has generally concluded

that informational environment is the strongest in the US. For instance, a vast literature on cross-

listing suggests that the information environment of international firms improves after they cross-

list in the US (e.g, Lang, Lins, and Miller, 2003; Bailey, Karolyi, and Salva, 2006). If indeed it is

the case that international firms operate in weaker information environments, it is possible that

the ML models might show significant improvements in forecasting ability as compared to the

extant cross-sectional models. Conversely, the performance of cross-sectional models or machine

learning models for that matter has not been examined in an international setting. Because of

smaller sample sizes, researchers have to either run country-specific estimations that are noisier, or

pool disparate observations from different countries into a single estimation. In this subsection, we

examine the performance of the cross-sectional models and machine learning models using a sample

of international firms. To ensure the maximum sample coverage, we pool observations across all

countries (other than the US) in our estimation, both for the cross-sectional as well as the ML

models.

4.2..1 Overall Sample

We begin by examining the mean absolute forecast errors for the models using the international

sample. The results are presented in Table 3. The first set of columns present the MAFE for

one-year-ahead forecasts. Consider the cross-sectional forecasts first. None of the three regression-
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based models (HVZ, EP or RI) perform as well as even the naive random walk model. The MAFE

is 0.126 for HVZ, 0.098 for EP and 0.092 for RI all of which is worse than 0.078 for the RW model.

Consider the ML models next. While GBR and RI perform better than the cross-sectional models,

only the GBR model outperforms the RW model. The MAFE for GBR is 0.073, which is 0.005

lower than the RW model (an improvement of around 7%). The next set of columns presents the

MAFE for two-year-ahead forecasts. Again, with the exception of the GBR model, none of the

other models perform better than RW (MAFE=0.099). The GBR model performs the best with

MAFE of 0.090 which is approximately 9% better than the RW model. We find similar results for

three-year-ahead results, with the GBR model (MAFE=0.105) performing the best and delivering

a significant improvement over all other models.6

The results in Table 3 highlight an important contribution of our paper. Cross-sectional fore-

casts, which tend to be error prone in the US context (see Gerakos and Gramacy (2013)), perform

even worse in an international context. The EP and RI models from Li and Mohanram (2014)

perform well in the US context, but these models also fare worse than RW internationally. Given

this, the GBR model offers promise as a model to use in the international context.

4.2..2 Partitions based on the Information Environment

We next consider the performance of the models in the international sample partitioned on the

basis of our proxies for information environment - size, analyst following and earnings volatility.

The results are presented in Table 4.

Panel A presents the results partitioned by size (Market Capitalization). The first set of columns

present the results for small firms. Consistent with the results for the overall sample, the cross-

sectional models all perform poorly. The MAFE for the HVZ (0.213), EP (0.133) and RI (0.125)

are all worse than the naive benchmark of RW (0.117). Among the ML models, the Lasso and

6As we do for the US sample, we examined an augmented cross-sectional regression model that uses all the
explanatory variables used in the ML models. Such a model performs the worst of all models in all horizons,
suggesting that the improved forecasting accuracy arises not from the additional variables alone, but from the ML
modelling technique.
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Ridge models both perform poorly. The RF model performs marginally better than the RW model

with a MAFE of 0.116. The GBR model, on the other hand, is the best performing overall with a

MAFE of 0.106, which is almost 10% better than RW. For the two-year-ahead horizon, both the

RF and GBR models outperform the RW model, with MAFE of 0.141 and 0.126 respectively as

opposed to 0.147 for RW. Again, the best performing model is GBR, with an error reduction of

0.020 (around 14%). For the three-year-ahead horizon, again the best performing model is GBR

with a MAFE of 0.146, which is substantially better than RW with a MAFE of 0.168. The error

reduction with GBR is 0.022 (around 13%).

The next set of columns present the results for larger firms. While the average errors are

substantially lower, none of the models perform as well as the naive RW model, which has the lowest

MAFE for all three horizons (0.039, 0.052 and 0.062 for 1,2 and 3-year-ahead horizons respectively).

Among the cross-sectional models, the HVZ model performs well with MAFE of 0.040, 0.052 and

0.065 for 1,2 and 3-year-ahead horizons respectively. Among the ML models, the only model to

perform reasonably well is GBR with MAFE of 0.040, 0.054 and 0.065 for 1,2 and 3-year-ahead

horizons respectively. Thus the results of the first partition using international data suggest that

the improved forecasting accuracy of ML models is concentrated in the crucial subgroup of small

firms. For large firms, while the errors are lower, no model beats the RW benchmark.

Panel B presents the results partitioned by analyst following. The first set of columns present

the results for the important subgroup of firms without analyst following. Here too, we find that

none of the cross-sectional forecasts are able to improve on the naive RW benchmark for all three

horizons. Among the ML models, again it is the GBR model which alone performs strongly,

outperforming all models across all horizons. For one-year-ahead forecasts, the MAFE of GBR

is 0.089 as opposed to 0.094 for RW (improvement of 0.005 or around 6%). For two-year-ahead

forecasts, the MAFE of GBR is 0.109 as opposed to 0.121 for RW (improvement of 0.012 or around

10%). Finally, for three-year-ahead forecasts, the MAFE of GBR is 0.130 as opposed to 0.142 for

RW (improvement of 0.012 or over 8%).
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The next set of columns present the results for firms with analyst following. At was the case for

large firms, the forecast error is smaller for followed firms. Interestingly, we find similar patterns

in the subset with analyst following. None of the cross-sectional models are able to outperform

the naive model. Among the ML models, the GBR model performs the strongest, significantly

improving on the RW model in all three horizons. For one-year-ahead forecasts, GBR has a MAFE

of 0.064, significantly better than the 0.068 for RW. We find similar improvements for the two and

three-year-ahead forecast horizons.

Panel C presents the results partitioned by earnings volatility. The results largely mirror that for

the size partition. For firms with volatile earnings, only the GBR model delivers earnings forecasts

with significantly lower error compared to the RW benchmark. All the other cross-sectional and

ML models fare worse in all three horizons. For one-year-ahead forecasts, GBR generates MAFE

of 0.081, which is around 10% better than the MAFE of 0.089 for the RW model. We see similar

strong reduction in MAFE for GBR over the two-year-ahead (0.097 for GBR vs 0.111 for RW) and

three-year-ahead (0.111 for GBR vs 0.127 for RW) forecast horizons.

The next set of columns present the results for the low volatility subsample. Again, while the

errors are lower for all models are expected, the only model to perform as well as or better than

the RW model is the GBR model. However, the improvements are statistically insignificant.

Overall, our partition analysis in the international setting also validates the usefulness of ma-

chine learning models in the key subsamples of small firms and firms with the most volatile earnings.

There are however two major differences in the international context. One - all the extant cross-

sectional models perform poorly and fail to beat the benchmark of the RW model, and perform

particularly poorly in the crucial subsamples of small firms, firms without analyst following and

firms with volatile earnings. Two - only the GBR model consistently produces earnings forecasts

with the lowest absolute forecast error in almost every subsample.
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4.3. Model Bias

Our tests thus far have focused on forecasting accuracy measured by unsigned forecast error

(MAFE). We now turn our attention to forecast bias. Bias and forecast accuracy are fundamentally

different concepts - bias is a measure of signed error, while forecast accuracy is a measure of unsigned

error. It is possible for a model with higher MAFE to have lower bias, if the errors ”cancel out”.

Conversely, a model can have a high degree of accuracy and yet be biased. Why might researchers

care about bias? Bias may not be that important if the focus is on the firm-level. However, if the

focus is on the aggregate, e.g. estimating the aggregate market premium as in Claus and Thomas

(2001) or estimating aggregate implied cost of capital as in Li, Ng, and Swaminathan (2013), then

it is important to have unbiased forecasts. Easton and Sommers (2007)) show that ICC estimates

derived from analyst forecasts are systematically biased upwards because the forecasts used to

generate them are optimistically biased.

In our next set of tests, we examine the bias of the forecasts generated by the cross-sectional as

well as the ML models. We define bias as the difference between the predicted earnings forecasts

minus actual earnings , scaled by either price per share (for models that forecast EPS) or market

capitalization (for models that forecast unscaled total earnings). A positive bias indicates that the

forecast is higher than the actual,i.e. optimistic forecasts. Conversely, a negative bias on the other

hand indicates that forecasts are pessimistic. The results are presented in Table 5.

Panel A presents the results for the international sample. Unsurprisingly, the RW model per-

forms poorly, especially as the horizon gets longer. The mean bias increases in magnitude from

-0.018 for one-year-ahead to -0.034 for two-year-ahead to -0.049 for three-year-ahead forecasts. This

is because the static RW model is inherently pessimistic, as it does not incorporate any growth

into its forecasts. Among the cross-sectional forecasts, the HVZ shows a high level of optimistic

bias - i.e. the actual earnings are considerably less than the forecasted earnings (0.030, 0.059 and

0.088 for 1,2 and 3-year-ahead forecasts respectively). The EP model also produces optimistically

biased forecasts, but the bias is far less than that of the HVZ model (0.007, 0.010, 0.013). The
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cross-sectional model that performs the best is the RI model for which the mean bias across the

three-years are insignificantly different from zero (0.002, 0.000, and 0.002 for 1,2 and 3-year-ahead

forecasts respectively). Among the ML models, the Lasso and Ridge models produce unbiased

forecasts across all horizons. GBR and RF produce slightly biased forecasts, but the level of bias

is relatively low, especially for GBR. The mean bias for GBR is 0.001, -0.007, and -0.014, while

the mean bias for RF is -0.004, -0.010 and -0.016 for 1,2 and 3-year-ahead forecasts respectively.

What the bias results indicate is that researchers may have a trade-off to make with model selection

in the US context. The models that produce the least biased forecasts are not the same as the

models that produce the most accurate forecasts. Among the cross-sectional models, the RI model

produces forecasts that are reasonably accurate (Tables 1 and 2) as well as unbiased. Among the

ML models, the GBR model produces forecasts that are the most accurate (Tables 1 and 2) and

have, what might be considered, an acceptable level of bias.

Panel B presents the results for the US sample. Here too, the static RW model performs poorly,

especially as the horizon gets longer. The mean bias increases from -0.015 to -0.029 to -0.039 for

1,2 and 3-year-ahead forecasts respectively. Among the cross-sectional forecasts, the RI model

dominates with unbiased forecasts for all three horizons. Among the ML models, the bias results

are very different compared to the US sample. The Lasso and Ridge models produce extremely

biased (optimistic) forecasts. The GBR model performs the best, with unbiased forecasts for all

horizons. The RF model also performs reasonably well with unbiased forecasts for 1 and 2-year-

ahead forecasts, but biased forecasts for 3-year-ahead forecasts. Combining these bias results with

the earlier results for forecast accuracy produces a clear winner in the international context. The

GBR model produces the most accurate forecasts (Tables 3 and 4) which are also unbiased. Among

the cross-sectional models, the RI model produces unbiased forecasts, but the forecast error can

often be higher than that of the naive RW model.
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4.4. Performance of Model-Based ICCs

Our final set of tests uses the Implied cost of capital (ICC) paradigm to test the quality of

the forecasts. As Mohanram and Gode (2013) show, the poor performance of ICC metrics can

be largely attributed to the poor quality of the forecasts. When forecasts are accurate, the ICCs

generated from them ”perform well” - i.e. they are a reliable measure of expected returns. Li

and Mohanram (2014) test their proposed cross-sectional models (EP and RI) and show that these

models generate better ICCs than those from the HVZ model.

Using forecasts from each of the cross-sectional (HVZ, EP and RI) as well as ML models (Lasso,

Ridge, GBR and RF), we generate measures of ICC, which is defined as the average of the ICC

from the GLS,CT, PEG and OJ models. Note that the naive RW model cannot be used to compute

ICC, as it does not provide any estimate of earnings growth which is a prerequisite for two of the

ICC models (PEG and OJ). We test the performance of the ICCs generated from the different

forecasting models using two sets of tests. First, we run univariate regressions of realized returns

on the measure of ICC and test how close the coefficient on the ICC is to the theoretical benchmark

of ”1”. Second, we create portfolios based on the level of ICC and examine the pattern of returns to

see if there is a monotonic relationship between ICC and future returns. For both sets of tests, we

express ICC in terms of monthly returns and use monthly returns for the one-year-ahead horizon.7

4.4..1 US results

Table 6 presents the results for the sample of US firms. Panel A presents the results of the

univariate regression of ICC on realized returns. Each of the seven models produces ICCs that

are significantly positively correlated with future returns. Among the cross-sectional models, HVZ

performs the worst with the smallest coefficient of 0.346, EP the next best with a coefficient of

0.497, while RI performs the best with a coefficient of 0.593. However, all these coefficients are

7We use monthly returns for this analysis because annual returns are more likely to be affected by delisting bias;
delisting-adjusted returns are not available for the international sample. In untabulated analysis, we find that using
unadjusted annual returns produces qualitatively and statistically similar results.
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significantly below the theoretical benchmark of 1. All the ML models have higher coefficients,

0.665 for Lasso, 0.704 for Ridge, 0.912 for GBR and 0.992 for RF. However, only the GBR and RF

have coefficients that are statistically indistinguishable from the theoretical benchmark of 1.

Panel B of Table 6 presents the portfolio results for the US sample across deciles of ICC generated

using each of the seven measures. In this table, a model can be deemed to perform well if we find

a significant spread in returns across extreme ICC deciles, and if the spread in realized returns

is comparable to the spread in the ICC. For all seven models, we find significant return spreads

between the lowest and highest ICC deciles. The cross-sectional models have the lowest spread,

with HVZ (0.68%), EP (0.68%) and RI (0.70%) all showing return spreads between the extreme

deciles that are far less than the spread in ICCs. The Lasso and Ridge models perform better with

return spreads of 0.80% and 0.77% respectively. However, the models that perform the best by far

are GBR (0.96%) and RF (0.89%). For these two models, the spread in returns is almost as large

as the spread in ICC (1.10% for GBR, 1.06% for RF).

The results from Table 6 highlight the importance of forecast quality for the estimation of ICCs.

It is not surprising that the models that perform the best, GBR and RF among the ML models

and the RI model among the cross-sectional models, are also the models that produces the most

accurate and least biased forecasts.

4.4..2 International results

Table 7 presents the results for the international sample. Panel A presents the results of the

univariate regression of ICC on realized returns. Among the cross-sectional models, the HVZ model

performs poorly and actually shows a statistically insignificant correlation with realized returns

(coefficient = 0.074, t-stat = 1.01). The EP and RI perform moderately well with significant

coefficients of 0.529 and 0.649 respectively. Among the ML models, the Lasso and Ridge models

perform poorly, with coefficients of 0.204 and 0.217 respectively. The RF model performs better

with a significant coefficient of 0.639. However, the model that stands out is the GBR model with
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a coefficient of 1.013 which is indistinguishable from the theoretical benchmark of 1.

Panel B of Table 7 presents the portfolio results for the international sample across deciles of

ICC generated using each of the seven measures. These results also mirror the regression results.

Among the cross-sectional model, the HVZ model performs poorly with return spread of 0.42%, far

less than the ICC spread of 3.15%. The EP and RI models perform moderately with return spreads

of 1.08% and 1.14% as compared to ICC spreads of 1.65% and 1.39%. Among the ML models, both

the Lasso and Ridge models perform poorly, with return spreads under 1%, far less than the ICC

spreads that are in excess of 2%. By far, the best performing model is GBR, with return spreads

of 1.22% that is comparable to the ICC spread of 1.04%. The RF model also performs moderately

with return spreads of 1.08% as compared to the ICC spread of 1.49%.

The results from Table 7 highlight an important contribution of this paper. One particular

model, the GBR model, dominates all other models in its ability to generate the most accurate

and least biased forecasts, in both US and international samples. Unsurprisingly, it also generates

ICCs that perform the best.

5. Conclusion

In this paper, we test whether recently developed machine learning (ML) techniques can help

researchers seeking to generate accurate and unbiased forecasts of future earnings, and whether

these forecasts can lead to better estimates of implied cost of capital (ICC). We examine these

questions, not just in US firms like most prior research, but also in an international sample. We

consider four ML models - Lasso regression, Ridge regression, Gradient boosting regression (GBR)

and Random Forest (RF). We benchmark the performance of these models against both a naive

random walk (RW) model as well as extant cross-sectional models of forecasting, specifically the

HVZ model from Hou et al. (2012) and the earnings persistence (EP) and residual income (RI)

models from Li and Mohanram (2014).

Within the US sample, we find that the GBR and RF models both perform well, generating
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forecasts with the greatest ex-post accuracy. The EP and RI models also perform reasonably well,

while the HVZ, Lasso and Ridge models perform poorly, often underperforming even the naive

RW model. The improvements generated by the GBR and RF model, while not dramatic, are

concentrated in the important subgroups of small firms and firms with volatile earnings. However,

it is in the international sample where one ML model, the GBR model, really shines in its ability

to generate forecasts with dramatically better forecasting accuracy. The results from ICC tests

mirror the forecast accuracy tests - with the GBR model performing the strongest, especially for

international firms.

The results of this paper have important methodological contributions for researchers in finance

and accounting, striving to generate accurate earnings forecasts and reliable measures of expected

risk. We recommend that future research use the GBR model to generate estimates of future earn-

ings as well as ICC. This recommendation is particularly important in the subset of international

earnings for two reasons. First, our results show that the cross-sectional models that perform mod-

erately well in the US sample, do not fare as well internationally. Second, the problem of scarce

coverage and volatile earnings is likely to more severe in international settings, and these are some

of the subsamples in which the GBR model does extremely well.

We must mention that ours is only a first attempt at showing that ML models can add a lot of

value in both forecasting space as well as the estimation of ICC. In fact, one can view our results

as a lower bound of what ML models can do. We have used a simple and static (though reasonably

exhaustive) set of potential explanatory variables in our estimation models. Using a wider set of

variables, including non-financial variables as well as market-based signals, might also increase the

accuracy of the forecasts and the performance of the ICCs from these forecasts. We leave this

question for future research to examine.
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Appendix: Description of Models and Variables

This table describes the models used for generating earnings forecasts and computations of ICCS, and defines the
variables used in earnings forecast models, including traditional models (e.g., HVZ, EP, and RI) and machine learning
models. All variables are obtained from Compustat North America or Compustat Global; non-U.S. fundamental data
are converted to U.S. dollars using Compustat’s exchange-rate file.

Variable Description Computation

A1. Earnings Forecasting Models

Models Estimated

HV Z Generate earnings forecasts us-
ing the model of Hou et al.
(2012)

E[Ei,t+τ ] = β0 + β1Ai,t + β2Di,t + β3DDi,t + β4Ei,t

+ β5Neg Ei,t + β6ACCRUALi,t + ϵi,t

EP Generate earnings forecasts us-
ing the model of Li and Mohan-
ram (2014)

E[Ei,t+τ ] = β0 + β1Ei,t + β2Neg Ei,t + β3Neg Ei,t × Ei,t + ϵi,t

RI Generate earnings forecasts us-
ing the model of Li and Mohan-
ram (2014)

E[Ei,t+τ ] = β0 + β1Ei,t + β2Neg Ei,t + β3Neg Ei,t × Ei,t

+ β4Bi,t + β5TACCi,t + ϵi,t

A2. Computation of ICCS

Valuation Models

ICCGLS Re computed using the model in
Gebhardt et al. (2001)

Pi,t = Bi,t +
11∑

τ=1

Et[Ei,t+τ ] − (Re − 1) × Et[Bi,t+τ−1]

(Re)τ

+
Et[Ei,t+12] − (Re − 1) × Et[Bi,t+11]

(Re − 1)(Re)11

ICCCT Re computed using the model in
Claus and Thomas (2001)

Pi,t = Bi,t +
3∑

τ=1

Et[Ei,t+τ ] − (Re − 1) × Et[Bi,t+τ−1]

(Re)τ

+
Et[Ei,t+3] − (Re − 1) × Et[Bi,t+2]

((Re − 1) − g)(Re)3
(1 + g)

ICCPEG Re computed using the “PEG”
model in Easton (2004)

Re = 1 +

√
Ei,t+2 − Ei,t+1

Pi,t

ICCOJ Re computed using the model
in Ohlson and Juettner-Nauroth
(2005)

Pt =
Et+1

(Re − 1)
+

Et+1(Et+2 + (Re − 1)Dt+1 − (Re)Et+1)

(Re − 1)(Re − 1) −
Et+3+(Re−1)Dt+2−ReIt+2
Et+2+(Re−1)Dt+1−ReEt+1

)

A3. Definitions of Variables in the HVZ Model

Ei,t+τ Earnings in year t+τ ib-spi

At Total assets in year t at
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Variable Description Computation

Dt Dividend payment in year t dvc

DDt Dividend Payer Indicator An indicator variable that equals 1 if dividend is
higher than 0

Neg Et Negative earnings indicator An indicator variable that equals 1 for firms with neg-
ative earnings

Accruals Accruals Change in non-cash current assets (act - che) minus
change in current liabilities excluding short-term debt
and taxes payable (lct - dlc - txp) minus depreciation
and amortization (dp)

A4. Definitions of Variables in EP and RI Models

Ei,t+τ Earnings per share in year t+τ ((ib-spi)/csho

Neg Et Negative earnings indicator An indicator variable that equals 1 for firms with neg-
ative earnings

B Book value of equity per share ceq/csho

TACC Total accruals Sum of the change in WC ((act - che) - (lct - dlc)),
change in NCO ((at - act - ivao) - (lt - lct - dltt)), and
change in FIN ((ivst + ivao) - (dltt + dlc + pstk))

A5. Definitions of Variables in Machine Learning Models

Sale Total sales sale/csho

COGS Cost of goods sold cogs/csho

XSGA Selling, general, and adminis-
trative expenses

xsga/csho

XAD Advertising expense xad/csho

XRD Research and development ex-
pense

xrd/csho

DP Depreciation and amortization dp/csho

XINT Interest and related expense xint/csho

NOPIO Non-operating income expense nopio/csho

TXT Income taxes txt/csho

XIDO Extraordinary items and dis-
continued operations

xido/csho

E Earnings (ib - spi)/csho

DV C Common dividend dvc/csho

CHE Cash and short-term invest-
ments

che/csho

INV T Inventories invt/csho

RECT Receivables rect/csho

ACT Total current assets act/csho
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Variable Description Computation

PPENT Property, plant, and equipment
(Net)

ppent/csho

IV AO Investments and advances ivao/csho

INTAN Intangible assets intan/csho

AT Total assets at/csho

AP Accounts payable ap/csho

DLC Debt in current liabilities dlc/csho

TXP Income taxes payable txp/csho

LCT Total current liabilities lct/csho

DLTT Long-term debt dltt/csho

LT Total liabilities lt/csho

CEQ CommonOrdinary equity ceq/csho

CFO Cash flow from operating activ-
ities

(oancf - xidoc)/csho
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Table 1. Forecasting Performance for the US Sample

This table presents the time-series average of the mean absolute forecasting errors (MAFE) using the US sample
for both traditional models and machine learning models. Forecasting error for the HVZ model is calculated as the
absolute value of the difference between forecast earnings and actual earnings, scaled by market value of equity at
the fiscal year end. Forecasting error for all other models (RW, EP, RI, Lasso, Ridge, GBR, and RF) is calculated
as the absolute value of the difference between forecast earnings per share and actual earnings per share, scaled by
the stock price at the prior fiscal year end. The t-statistics are reported in the parentheses. ***, **, and * denote
significance at the 1%, 5% and 10% levels, respectively

One-Year Ahead Two-Year Ahead Three-Year Ahead
(1) (2) (3) (4) (5) (6)

Model Mean t-stat Mean t-stat Mean t-stat

HVZ 0.078*** [31.18] 0.124*** [31.24] 0.165*** [29.62]
RW 0.064*** [30.27] 0.093*** [28.04] 0.117*** [25.72]
EP 0.057*** [26.97] 0.081*** [31.95] 0.101*** [31.38]
RI 0.057*** [27.11] 0.079*** [31.73] 0.098*** [29.84]
Lasso 0.056*** [28.55] 0.079*** [30.71] 0.100*** [29.13]
Ridge 0.056*** [28.52] 0.079*** [30.53] 0.100*** [29.16]
GBR 0.054*** [26.77] 0.075*** [28.59] 0.095*** [26.36]
RF 0.054*** [27.18] 0.075*** [28.69] 0.094*** [26.44]

Comparison

GBR - RW -0.010*** [-6.76] -0.018*** [-8.66] -0.022*** [-8.72]
GBR - EP -0.004*** [-7.01] -0.005*** [-6.48] -0.007*** [-6.04]
GBR - RI -0.003*** [-7.66] -0.003*** [-5.24] -0.003*** [-3.98]
RF - RW -0.009*** [-6.63] -0.018*** [-8.78] -0.022*** [-8.84]
RF - EP -0.003*** [-5.75] -0.005*** [-6.73] -0.007*** [-6.80]
RF - RI -0.003*** [-6.25] -0.003*** [-5.39] -0.003*** [-4.93]
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Table 2. Forecasting Performance in the US: Sub-sample Analyses

This table presents the time-series average of the mean absolute forecasting errors of the traditional and machine learning models for sub-samples
within the US. Panels A, B, and reports results of the sample partitioned by firm size, analyst coverage, and earnings volatility, respectively.
Forecasting error for the HVZ model is calculated as the absolute value of the difference between forecast earnings and actual earnings, scaled
by market value of equity at the fiscal year end. Forecasting error for all other models (RW, EP, RI, Lasso, Ridge, GBR, and RF) is calculated
as the absolute value of the difference between forecast earnings per share and actual earnings per share, scaled by the stock price at the fiscal
year end. The t-statistics are reported in the parentheses. ***, **, and * denote significance at the 1%, 5% and 10% levels, respectively

Panel A: Partition Analyses by Firm Size

Small Firms Large Firms

One-Year Ahead Two-Year Ahead Three-Year Ahead One-Year Ahead Two-Year Ahead Three-Year Ahead
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat

HVZ 0.118*** [29.97] 0.191*** [28.37] 0.259*** [26.30] 0.038*** [25.63] 0.056*** [25.32] 0.071*** [24.09]
RW 0.089*** [30.24] 0.128*** [28.47] 0.161*** [26.13] 0.038*** [26.46] 0.058*** [24.40] 0.073*** [22.63]
EP 0.078*** [28.26] 0.110*** [32.57] 0.139*** [32.72] 0.036*** [22.44] 0.051*** [26.98] 0.064*** [25.80]
RI 0.078*** [28.16] 0.106*** [32.33] 0.131*** [31.19] 0.037*** [23.00] 0.051*** [26.88] 0.064*** [24.72]
Lasso 0.075*** [29.46] 0.106*** [31.64] 0.133*** [30.54] 0.036*** [24.39] 0.053*** [25.98] 0.066*** [24.22]
Ridge 0.076*** [29.45] 0.106*** [31.44] 0.133*** [30.62] 0.036*** [24.36] 0.053*** [25.90] 0.066*** [24.16]
GBR 0.073*** [27.54] 0.100*** [29.14] 0.125*** [27.34] 0.035*** [22.96] 0.051*** [24.86] 0.064*** [22.77]
RF 0.073*** [28.01] 0.100*** [29.37] 0.125*** [27.61] 0.035*** [23.32] 0.051*** [24.70] 0.064*** [22.58]

Comparison

GBR - RW -0.016*** [-7.98] -0.029*** [-10.20] -0.035*** [-9.95] -0.004*** [-3.74] -0.007*** [-4.75] -0.008*** [-5.10]
GBR - EP -0.006*** [-8.28] -0.010*** [-8.63] -0.014*** [-8.77] -0.001*** [-3.82] -0.000 [-0.79] 0.001 [0.73]
GBR - RI -0.005*** [-8.60] -0.006*** [-6.84] -0.006*** [-6.18] -0.002*** [-5.30] -0.001 [-1.41] 0.000 [0.63]
RF - RW -0.016*** [-7.96] -0.029*** [-10.25] -0.036*** [-10.05] -0.003*** [-3.33] -0.007*** [-4.87] -0.009*** [-5.22]
RF - EP -0.005*** [-7.13] -0.010*** [-9.22] -0.014*** [-9.90] -0.001** [-2.44] -0.000 [-0.60] 0.000 [0.46]
RF - RI -0.005*** [-7.36] -0.006*** [-7.45] -0.007*** [-7.66] -0.001*** [-3.56] -0.000 [-1.10] 0.000 [0.23]
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Table 2. (Continued)

Panel B: Partition Analyses by Analyst Coverage

No Coverage With Coverage

One-Year Ahead Two-Year Ahead Three-Year Ahead One-Year Ahead Two-Year Ahead Three-Year Ahead
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat

HVZ 0.107*** [26.71] 0.177*** [25.10] 0.241*** [24.51] 0.053*** [25.17] 0.082*** [12.55] 0.101*** [16.52]
RW 0.077*** [31.84] 0.112*** [33.49] 0.140*** [31.75] 0.052*** [15.46] 0.078*** [10.12] 0.096*** [9.66]
EP 0.071*** [27.46] 0.100*** [35.09] 0.127*** [37.95] 0.048*** [12.26] 0.063*** [22.06] 0.080*** [14.93]
RI 0.071*** [27.61] 0.096*** [34.95] 0.120*** [37.69] 0.048*** [12.97] 0.061*** [30.99] 0.076*** [20.14]
Lasso 0.068*** [30.92] 0.096*** [36.33] 0.122*** [38.25] 0.046*** [17.16] 0.061*** [37.05] 0.077*** [22.93]
Ridge 0.069*** [30.81] 0.096*** [36.12] 0.122*** [38.12] 0.046*** [16.63] 0.061*** [35.98] 0.076*** [26.51]
GBR 0.066*** [29.09] 0.091*** [34.57] 0.114*** [35.21] 0.044*** [17.44] 0.057*** [37.17] 0.071*** [32.38]
RF 0.066*** [29.70] 0.091*** [34.76] 0.114*** [35.32] 0.045*** [15.06] 0.057*** [37.02] 0.071*** [30.20]

Comparison

GBR - RW -0.011*** [-6.67] -0.021*** [-8.78] -0.026*** [-8.37] -0.009*** [-4.98] -0.020*** [-2.75] -0.025*** [-2.84]
GBR - EP -0.005*** [-7.67] -0.009*** [-7.74] -0.013*** [-7.69] -0.005*** [-3.15] -0.006*** [-2.85] -0.008** [-2.11]
GBR - RI -0.005*** [-8.04] -0.006*** [-6.51] -0.006*** [-5.65] -0.005*** [-3.55] -0.004*** [-4.62] -0.005** [-2.24]
RF - RW -0.011*** [-6.63] -0.021*** [-8.96] -0.026*** [-8.43] -0.008*** [-5.20] -0.020*** [-2.73] -0.025*** [-2.91]
RF - EP -0.005*** [-6.66] -0.009*** [-7.92] -0.013*** [-8.31] -0.004*** [-3.66] -0.006*** [-2.81] -0.008** [-2.23]
RF - RI -0.005*** [-6.92] -0.006*** [-6.52] -0.006*** [-6.50] -0.004*** [-4.37] -0.004*** [-4.47] -0.005** [-2.47]
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Table 2. (Continued)

Panel C: Partition Analyses by Earnings Volatility

High Volatility Low Volatility

One-Year Ahead Two-Year Ahead Three-Year Ahead One-Year Ahead Two-Year Ahead Three-Year Ahead
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat

HVZ 0.096*** [26.63] 0.153*** [27.36] 0.201*** [25.88] 0.053*** [27.66] 0.083*** [26.92] 0.110*** [24.13]
RW 0.079*** [27.12] 0.114*** [28.85] 0.139*** [28.16] 0.045*** [24.56] 0.068*** [21.35] 0.088*** [18.20]
EP 0.075*** [24.27] 0.103*** [35.02] 0.126*** [36.12] 0.040*** [23.29] 0.057*** [27.40] 0.072*** [23.27]
RI 0.075*** [24.46] 0.100*** [35.12] 0.120*** [35.82] 0.040*** [23.26] 0.057*** [26.62] 0.072*** [22.16]
Lasso 0.070*** [30.87] 0.099*** [37.60] 0.121*** [34.60] 0.040*** [24.32] 0.058*** [25.00] 0.074*** [21.47]
Ridge 0.070*** [29.79] 0.098*** [35.18] 0.121*** [31.96] 0.040*** [24.47] 0.058*** [24.89] 0.074*** [21.31]
GBR 0.068*** [27.30] 0.093*** [32.93] 0.115*** [32.45] 0.038*** [22.98] 0.056*** [24.04] 0.072*** [20.48]
RF 0.070*** [20.05] 0.094*** [29.55] 0.115*** [32.79] 0.038*** [23.80] 0.056*** [24.25] 0.071*** [20.58]

Comparison

GBR - RW -0.011*** [-5.13] -0.020*** [-6.04] -0.024*** [-6.14] -0.007*** [-6.12] -0.012*** [-6.68] -0.016*** [-6.92]
GBR - EP -0.007*** [-5.53] -0.010*** [-9.45] -0.012*** [-5.80] -0.001*** [-3.53] -0.001 [-1.19] -0.001 [-0.78]
GBR - RI -0.007*** [-5.28] -0.007*** [-8.22] -0.005*** [-3.38] -0.002*** [-4.42] -0.001* [-1.99] -0.000 [-0.87]
RF - RW -0.009** [-2.50] -0.019*** [-4.81] -0.024*** [-5.70] -0.007*** [-6.03] -0.012*** [-6.78] -0.016*** [-7.05]
RF - EP -0.005*** [-4.23] -0.009*** [-6.34] -0.011*** [-4.99] -0.001*** [-2.84] -0.001 [-0.89] -0.001 [-1.19]
RF - RI -0.005*** [-4.53] -0.006*** [-4.95] -0.005** [-2.67] -0.001*** [-3.60] -0.001 [-1.50] -0.001 [-1.48]
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Table 3. Forecasting Performance for the International Sample

This table presents the time-series average of the MAFE in our international sample for both traditional models and
machine learning models. Forecasting error for the HVZ model is calculated as the absolute value of the difference
between forecast earnings and actual earnings, scaled by market value of equity at the fiscal year end. Forecasting
error for all other models (RW, EP, RI, Lasso, Ridge, GBR, and RF) is calculated as the absolute value of the
difference between forecast earnings per share and actual earnings per share, scaled by the stock price at the fiscal
year end. The t-statistics are reported in the parentheses. ***, **, and * denote significance at the 1%, 5% and 10%
levels, respectively

One-Year Ahead Two-Year Ahead Three-Year Ahead
(1) (2) (3) (4) (5) (6)

Model Mean t-stat Mean t-stat Mean t-stat

HVZ 0.126*** [16.74] 0.188*** [18.75] 0.246*** [17.11]
RW 0.078*** [12.19] 0.099*** [12.94] 0.115*** [13.29]
EP 0.098*** [13.74] 0.130*** [12.73] 0.153*** [12.61]
RI 0.092*** [12.25] 0.121*** [11.45] 0.139*** [11.73]
Lasso 0.119*** [12.59] 0.165*** [11.61] 0.199*** [13.41]
Ridge 0.120*** [13.22] 0.165*** [11.68] 0.199*** [13.42]
GBR 0.073*** [13.35] 0.090*** [15.17] 0.105*** [15.28]
RF 0.082*** [11.82] 0.103*** [12.67] 0.128*** [11.35]

Comparison

GBR - RW -0.005*** [-4.09] -0.009*** [-3.88] -0.010*** [-3.98]
GBR - EP -0.025*** [-9.26] -0.040*** [-7.26] -0.047*** [-6.90]
GBR - RI -0.019*** [-6.36] -0.031*** [-5.58] -0.034*** [-5.25]
RF - RW 0.005*** [2.99] 0.004 [1.25] 0.013** [2.63]
RF - EP -0.016*** [-4.91] -0.028*** [-5.01] -0.024*** [-4.10]
RF - RI -0.010** [-2.83] -0.018*** [-3.20] -0.011 [-1.61]
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Table 4. Forecasting Performance Internationally: Sub-sample Analyses

This table presents the time-series average of the MAFE of the traditional and machine learning models for sub-samples within the international
data. Panels A, B, and C reports results of the sample partitioned by firm size, analyst coverage, and earnings volatility, respectively. Forecasting
error for the HVZ model is calculated as the absolute value of the difference between forecast earnings and actual earnings, scaled by market
value of equity at the fiscal year end. Forecasting error for all other models (RW, EP, RI, Lasso, Ridge, GBR, and RF) is calculated as the
absolute value of the difference between forecast earnings per share and actual earnings per share, scaled by the stock price at the fiscal year
end. The t-statistics are reported in the parentheses. ***, **, and * denote significance at the 1%, 5% and 10% levels, respectively

Panel A: Partition Analyses by Firm Size

Small Firms Large Firms

One-Year Ahead Two-Year Ahead Three-Year Ahead One-Year Ahead Two-Year Ahead Three-Year Ahead
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat

HVZ 0.213*** [16.45] 0.324*** [18.26] 0.426*** [14.99] 0.040*** [13.15] 0.052*** [12.99] 0.065*** [14.67]
RW 0.117*** [11.92] 0.147*** [12.89] 0.168*** [13.00] 0.039*** [12.23] 0.052*** [12.21] 0.062*** [12.57]
EP 0.133*** [13.32] 0.173*** [12.90] 0.202*** [12.49] 0.064*** [13.28] 0.088*** [11.60] 0.103*** [11.75]
RI 0.125*** [12.30] 0.161*** [12.14] 0.184*** [12.42] 0.059*** [11.14] 0.081*** [9.74] 0.095*** [9.73]
Lasso 0.158*** [12.20] 0.213*** [11.79] 0.253*** [12.97] 0.080*** [12.49] 0.116*** [10.66] 0.145*** [13.27]
Ridge 0.161*** [12.82] 0.214*** [11.81] 0.254*** [13.07] 0.080*** [13.06] 0.117*** [10.80] 0.144*** [13.11]
GBR 0.106*** [12.66] 0.126*** [14.83] 0.146*** [15.12] 0.040*** [14.31] 0.054*** [14.34] 0.065*** [13.86]
RF 0.116*** [11.54] 0.141*** [12.85] 0.172*** [11.76] 0.049*** [11.89] 0.065*** [12.03] 0.084*** [10.18]

Comparison

GBR - RW -0.011*** [-6.32] -0.020*** [-5.67] -0.022*** [-5.58] 0.002** [2.27] 0.002 [1.32] 0.003* [2.08]
GBR - EP -0.027*** [-9.08] -0.047*** [-7.15] -0.056*** [-6.74] -0.023*** [-8.43] -0.034*** [-6.80] -0.038*** [-6.52]
GBR - RI -0.020*** [-6.38] -0.034*** [-5.57] -0.038*** [-5.33] -0.019*** [-6.08] -0.028*** [-5.32] -0.030*** [-4.88]
RF - RW -0.000 [-0.21] -0.006* [-1.77] 0.004 [0.76] 0.010*** [5.52] 0.013*** [4.36] 0.022*** [4.43]
RF - EP -0.016*** [-5.10] -0.032*** [-5.42] -0.030*** [-4.48] -0.015*** [-4.25] -0.023*** [-4.09] -0.019*** [-3.17]
RF - RI -0.009** [-2.73] -0.020*** [-3.38] -0.011 [-1.54] -0.010** [-2.78] -0.017** [-2.85] -0.011 [-1.61]
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Table 4. (Continued)

Panel B: Partition Analyses by Analyst Coverage

No Coverage With Coverage

One-Year Ahead Two-Year Ahead Three-Year Ahead One-Year Ahead Two-Year Ahead Three-Year Ahead
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat

HVZ 0.188*** [17.35] 0.289*** [18.29] 0.386*** [15.90] 0.089*** [12.77] 0.128*** [14.35] 0.162*** [14.52]
RW 0.094*** [14.42] 0.121*** [14.34] 0.142*** [13.76] 0.068*** [10.25] 0.087*** [11.44] 0.099*** [12.02]
EP 0.115*** [15.58] 0.151*** [14.03] 0.180*** [13.46] 0.088*** [11.99] 0.118*** [11.20] 0.136*** [11.19]
RI 0.109*** [14.18] 0.142*** [12.49] 0.167*** [12.02] 0.082*** [10.66] 0.109*** [10.37] 0.123*** [11.02]
Lasso 0.131*** [17.08] 0.178*** [20.67] 0.218*** [23.47] 0.112*** [9.65] 0.158*** [8.40] 0.189*** [9.44]
Ridge 0.134*** [18.60] 0.180*** [19.42] 0.220*** [24.44] 0.113*** [9.96] 0.158*** [8.51] 0.188*** [9.36]
GBR 0.089*** [15.01] 0.109*** [15.66] 0.130*** [14.73] 0.064*** [11.55] 0.079*** [13.78] 0.091*** [14.14]
RF 0.102*** [13.09] 0.126*** [13.21] 0.160*** [11.33] 0.071*** [10.33] 0.089*** [11.58] 0.110*** [10.54]

Comparison

GBR - RW -0.005*** [-4.65] -0.012*** [-5.86] -0.013*** [-5.69] -0.004*** [-3.03] -0.008** [-2.69] -0.008** [-2.83]
GBR - EP -0.026*** [-8.11] -0.042*** [-7.43] -0.051*** [-7.27] -0.025*** [-9.06] -0.040*** [-6.53] -0.045*** [-6.18]
GBR - RI -0.020*** [-5.94] -0.033*** [-5.47] -0.038*** [-4.92] -0.019*** [-6.29] -0.030*** [-5.32] -0.032*** [-5.33]
RF - RW 0.008*** [3.00] 0.005 [1.64] 0.018*** [3.19] 0.003** [2.39] 0.003 [0.91] 0.011* [1.90]
RF - EP -0.013*** [-2.91] -0.025*** [-3.71] -0.021** [-2.82] -0.017*** [-6.37] -0.029*** [-5.50] -0.026*** [-4.68]
RF - RI -0.007 [-1.56] -0.016** [-2.31] -0.008 [-0.94] -0.011*** [-3.76] -0.019*** [-3.73] -0.013* [-1.98]
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Table 4. (Continued)

Panel C: Partition Analyses by Earnings Volatility

High Volatility Low Volatility

One-Year Ahead Two-Year Ahead Three-Year Ahead One-Year Ahead Two-Year Ahead Three-Year Ahead
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat
Mean
Coeff

t-stat

HVZ 0.155*** [18.38] 0.229*** [17.50] 0.301*** [16.82] 0.088*** [14.89] 0.128*** [16.18] 0.167*** [16.67]
RW 0.089*** [12.85] 0.111*** [12.66] 0.127*** [12.38] 0.061*** [11.41] 0.079*** [12.14] 0.093*** [13.30]
EP 0.109*** [14.05] 0.143*** [12.22] 0.168*** [12.29] 0.083*** [12.72] 0.111*** [11.31] 0.129*** [11.55]
RI 0.102*** [12.70] 0.132*** [10.90] 0.152*** [11.27] 0.078*** [11.57] 0.104*** [10.71] 0.119*** [11.16]
Lasso 0.125*** [14.16] 0.167*** [11.38] 0.204*** [13.27] 0.106*** [9.76] 0.150*** [9.08] 0.181*** [10.52]
Ridge 0.128*** [14.79] 0.169*** [11.62] 0.205*** [13.28] 0.106*** [9.98] 0.150*** [9.14] 0.180*** [10.32]
GBR 0.081*** [14.09] 0.097*** [14.69] 0.111*** [14.03] 0.060*** [12.68] 0.076*** [14.60] 0.090*** [14.49]
RF 0.093*** [12.69] 0.113*** [11.64] 0.140*** [10.09] 0.067*** [11.50] 0.085*** [12.47] 0.106*** [11.16]

Comparison

GBR - RW -0.007*** [-5.16] -0.014*** [-5.56] -0.016*** [-5.44] -0.001 [-1.28] -0.003 [-1.09] -0.003 [-1.12]
GBR - EP -0.028*** [-8.98] -0.046*** [-7.40] -0.056*** [-7.55] -0.023*** [-7.89] -0.034*** [-5.81] -0.039*** [-5.85]
GBR - RI -0.021*** [-6.42] -0.035*** [-5.53] -0.041*** [-5.49] -0.018*** [-5.83] -0.027*** [-4.92] -0.029*** [-4.75]
RF - RW 0.004* [1.91] 0.002 [0.41] 0.013** [2.20] 0.006*** [4.96] 0.006** [2.30] 0.013** [2.51]
RF - EP -0.016*** [-4.05] -0.030*** [-4.63] -0.028*** [-4.07] -0.016*** [-5.21] -0.026*** [-4.81] -0.023*** [-4.23]
RF - RI -0.009** [-2.30] -0.020*** [-2.91] -0.012 [-1.57] -0.011*** [-3.44] -0.019*** [-3.56] -0.013* [-2.06]
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Table 5. Forecasting Bias

This table presents the time-series average of the mean forecasting bias for both the traditional and machine learning
models. Panel A reports results for the US sample while Panel B reports results for the international sample.
Forecasting bias for the HVZ model is calculated as the difference between forecast and actual earnings, scaled by
market value of equity at the fiscal year end. Forecasting bias for all other models (RW, EP, RI, Lasso, Ridge, GBR,
and RF) is calculated as the difference between forecast earnings per share and actual earnings per share, scaled
by the stock price at the fiscal year end. The t-statistics are reported in the parentheses. ***, **, and * denote
significance at the 1%, 5% and 10% levels, respectively

Panel A: Forecasting Bias for the US Sample

One-Year Ahead Two-Year Ahead Three-Year Ahead
(1) (2) (3) (4) (5) (6)

Model Mean t-stat Mean t-stat Mean t-stat

HVZ 0.030*** [11.19] 0.059*** [12.98] 0.088*** [15.30]
RW -0.018*** [-8.19] -0.034*** [-9.27] -0.049*** [-9.21]
EP 0.007*** [3.40] 0.010*** [3.42] 0.013*** [3.19]
RI 0.002 [0.79] 0.000 [0.02] -0.002 [-0.60]
Lasso 0.002 [0.97] -0.001 [-0.35] -0.003 [-0.79]
Ridge 0.002 [1.15] -0.001 [-0.32] -0.004 [-0.86]
GBR 0.001 [0.33] -0.007** [-2.54] -0.014*** [-3.40]
RF -0.004** [-2.11] -0.010*** [-3.35] -0.016*** [-3.65]

Panel B: Forecasting Bias for the International Sample

One-Year Ahead Two-Year Ahead Three-Year Ahead
(1) (2) (3) (4) (5) (6)

Model Mean t-stat Mean t-stat Mean t-stat

HVZ 0.065*** [11.95] 0.119*** [11.15] 0.171*** [9.93]
RW -0.015*** [-4.19] -0.029*** [-4.28] -0.039*** [-4.90]
EP 0.023** [2.46] 0.037** [2.62] 0.042** [2.48]
RI 0.009 [1.01] 0.014 [0.98] 0.010 [0.64]
Lasso 0.061*** [6.44] 0.094*** [6.06] 0.124*** [8.31]
Ridge 0.060*** [6.36] 0.090*** [5.68] 0.120*** [7.91]
GBR -0.001 [-0.26] -0.007 [-1.13] -0.011 [-1.37]
RF 0.007 [1.53] 0.012 [1.47] 0.025** [2.45]
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Table 6. Performance of Model-Based ICCs for the US Sample

This table presents the performance of model-based ICCs for the US sample. The implied cost of capital is computed
as the average value based on four models, GLS, CT, PEG, and OJ. Panel A presents the univariate Fama-MacBeth
regression results, with one-month-ahead realized return as the dependent variable and the model-based ICC as the
independent variable. Panel B presents the results of firms sorted into deciles by the model-based ICCs. The odd
columns report the equal-weighted mean ICC of the portfolios while the even columns report the equal-weighted
mean realized returns of the portfolios. The last row of Panel B reports results of the spread between the highest
and lowest decile of firms.The t-statistics are reported in the parentheses. ***, **, and * denote significance at the
1%, 5% and 10% levels, respectively.

Panel A: Regression Analyses

(1) (2) (3) (4) (5) (6)

Model
Slope
Coeff

t-stat Intercept t-stat R2 F -test for
Slope = 1

HVZ 0.346*** [4.19] 0.010*** [3.96] 0.022 62.80***
EP 0.497*** [2.86] 0.010*** [3.94] 0.021 8.37***
RI 0.593*** [3.40] 0.010*** [3.79] 0.020 5.44**
Lasso 0.665*** [3.60] 0.010*** [3.98] 0.020 3.29*
Ridge 0.704*** [3.93] 0.009*** [3.89] 0.020 2.73*
GBR 0.912*** [5.02] 0.008*** [3.21] 0.020 0.23
RF 0.992*** [4.66] 0.008*** [3.07] 0.020 0.00
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Table 6. (Continued)

Panel B: Portfolio Analyses

HVZ RI EP Lasso Ridge GBR RF
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Decile ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

1 0.34 1.18 0.33 1.00 0.26 1.09 0.30 1.01 0.30 1.02 0.26 0.88 0.26 0.96
2 0.52 1.21 0.44 1.31 0.39 1.26 0.40 1.20 0.40 1.16 0.38 1.28 0.38 1.12
3 0.64 1.25 0.51 1.32 0.46 1.32 0.46 1.29 0.46 1.26 0.44 1.29 0.44 1.31
4 0.75 1.25 0.57 1.44 0.52 1.46 0.51 1.40 0.51 1.38 0.50 1.21 0.50 1.37
5 0.87 1.46 0.62 1.38 0.58 1.32 0.57 1.38 0.57 1.42 0.55 1.53 0.55 1.34
6 1.00 1.42 0.68 1.50 0.64 1.32 0.63 1.38 0.63 1.38 0.61 1.41 0.60 1.50
7 1.16 1.31 0.76 1.38 0.72 1.42 0.71 1.43 0.71 1.44 0.68 1.43 0.66 1.43
8 1.38 1.58 0.86 1.49 0.82 1.52 0.81 1.54 0.81 1.57 0.78 1.53 0.75 1.52
9 1.75 1.58 1.03 1.51 0.96 1.57 0.98 1.59 0.98 1.63 0.92 1.58 0.88 1.57
10 2.63 1.86 1.41 1.70 1.28 1.77 1.32 1.82 1.32 1.79 1.22 1.98 1.15 2.01

Spread 2.29*** 0.68*** 1.08*** 0.70*** 1.01*** 0.68*** 1.02*** 0.80*** 1.02*** 0.77*** 0.96*** 1.10*** 0.89*** 1.06***

49



Table 7. Performance of Model-Based ICCs for the International Sample

Panel A: Regression Analyses

This table presents the performance of model-based ICCs for the international sample. The implied cost of capital is
computed as the average value based on four models, GLS, CT, PEG, and OJ. Panel A presents the univariate Fama-
MacBeth regression results, with one-month-ahead realized return as the dependent variable and the model-based
ICC as the independent variable. Panel B presents the results of firms sorted into deciles by the model-based ICCs.
The odd columns report the equal-weighted mean ICC of the portfolios while the even columns report the equal-
weighted mean realized returns of the portfolios. The last row of Panel B reports results of the spread between the
highest and lowest decile of firms.The t-statistics are reported in the parentheses. ***, **, and * denote significance
at the 1%, 5% and 10% levels, respectively.

(1) (2) (3) (4) (5) (6)

Model
Slope
Coeff

t-stat Intercept t-stat R2 F -test for
Slope = 1

HVZ 0.074 [1.01] 0.006** [2.26] 0.016 161.09***
EP 0.529*** [3.20] 0.002 [0.52] 0.016 8.12***
RI 0.649*** [3.34] 0.001 [0.37] 0.017 3.27*
Lasso 0.204** [2.09] 0.004 [1.20] 0.018 66.75***
Ridge 0.217** [2.22] 0.003 [1.17] 0.017 63.66***
GBR 1.013*** [5.71] 0.001 [0.25] 0.014 0.01
RF 0.639*** [4.18] 0.002 [0.75] 0.013 5.58**

50



Table 7. (Continued)

Panel B: Portfolio Analyses

HVZ RI EP Lasso Ridge GBR RF
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Decile ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

ICC
Realized
Returns

1 0.23 0.09 0.18 0.03 0.15 -0.07 0.22 0.11 0.22 0.15 0.16 -0.10 0.18 -0.11
2 0.41 0.44 0.33 0.32 0.29 0.32 0.41 0.37 0.40 0.32 0.26 0.09 0.29 0.37
3 0.54 0.44 0.44 0.24 0.38 0.32 0.58 0.53 0.57 0.56 0.32 0.62 0.37 0.46
4 0.66 0.59 0.54 0.60 0.47 0.35 0.77 0.72 0.75 0.68 0.38 0.78 0.44 0.61
5 0.78 0.88 0.64 0.43 0.56 0.86 0.96 0.67 0.94 0.54 0.45 0.67 0.51 0.71
6 0.94 0.78 0.75 0.97 0.65 0.70 1.17 0.72 1.15 0.82 0.52 0.72 0.60 0.82
7 1.14 1.05 0.88 0.87 0.77 0.89 1.40 0.82 1.38 0.99 0.61 0.81 0.70 0.98
8 1.42 0.86 1.05 1.00 0.90 1.01 1.67 0.95 1.64 0.84 0.72 0.69 0.85 0.67
9 1.94 0.86 1.27 0.96 1.10 1.09 2.01 0.71 1.98 0.66 0.87 1.13 1.06 0.97
10 3.38 0.51 1.83 1.11 1.55 1.07 2.54 0.93 2.52 0.96 1.20 1.12 1.68 0.97

Spread 3.15*** 0.42* 1.65*** 1.08*** 1.39*** 1.14*** 2.32*** 0.82*** 2.30*** 0.81*** 1.04*** 1.22*** 1.49*** 1.08***
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